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The Infinite-Volume Ground State of  the 
Lennard-Jones  Potent ial  
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We consider a finite chain of particles in one dimension, interacting through 
the Lennard-Jones potential. We prove the ground state is unique, and 
approaches uniform spacing in the infinite-particle limit. 

KEY W O R D S :  Crystal; Lennard-Jones potential; infinite-volume ground 
state. 

1. I N T R O D U C T I O N  

Although there has been notable progress in the understanding of liquid- 
vapor phase transitions, much less is known about the solid-liquid transi- 
tion. According to Uhlenbeck, m "The  basic difficulty lies perhaps in the fact 
that one does not really understand the existence of regular solids from the 
molecular forces. Why is it that by taking the minimum of 

E = ~j  ~o(Ir, - rj[) 

where ~o([r]) has the usual intermolecular [potential] form, one obtains for 
large N (strictly for N - +  oo) for the positions r~ of the N points a discrete 
lattice ?"  

We will exhibit a mechanism for this phenomenon which works for the 
Lennard-Jones potential, ~( [ r [ )=  I r 1 - 1 2  - [rl -s, in one dimension. It is 
not clear whether the method can be extended to higher dimensions or to 
quantum mechanics, although there is some hope for the former because of 
the way the general shape of ~o enters the proofs. 
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2. N O T A T I O N  A N D  S T A T E M E N T  OF RESULTS 

The symbols  j ,  k, m, and n always represent  integers. Let  N be an integer 
larger than  1, and define 

I =  {1,2 ..... N} 

S = { { L j +  1 .... , k} l l  <~j<~k<~N} 

T = {{1, 2,..., k}12 k N} 

R+ N = {z = (zz ..... ZN)~RN[Zj > 0 , j ~ I }  

I f J  ~ S, [JI denotes the cardinali ty of  J. 
Consider  a system of  N + 1 " p o i n t  par t ic les"  at  posit ions xj ~ •, where 

0 ~< j ~< N,  xo = 0, and xj < x~ for  j < k. Define z = {zj[j ~ 1} by zj = 
xj - xj_ 1, representing the spacing between neighboring particles. V denotes 
the Lennard-Jones  potential ,  V(x) = Ix[-  12 _ [x I -6, and the total  potential  
energy of  the system is given by 

I N N  R ( ~ )  

J=6 k=0 n=l I =n /ccj" 

We will prove  that  for  fixed N, EN(x) attains a unique global min imum 
at  x = ~ = ~(N).  Then  as particles are added one by one at  posit ions x_ i ,  
x_z ,  xN+l,  etc. (i.e., to bo th  sides of  the chain and in any order  such tha t  
infinitely m a n y  are added to each side), we prove  that  for  j ~ 2~ fixed, 
.~j(N) -+jc as N---~ 0% where e = 7r(3,714,816/1,816,214,400) ~/6 ___ 1.119. 

3. PROOF OF RESULTS 

Our  first result (easily generalized to other potentials and higher di- 
mensions)  shows that  the forces suppor t  an " a p p r o x i m a t e  crystal ,"  a p roper ty  
s t ronger  than H-stability.  

T h e o r e m  1. Let  L e T, and for  z ~ R+ N consider any coordinates  zj, 
j r L, to be fixed and the rest variable. Then WN(z) assumes a global min imum 
at one or more  points ~, ~ I~+ N, and such a point  must  satisfy .99 < ~ < 21/6 
for  k ~ L. 

Proof. Let  z ~ R+ N be fixed th roughout  this proof ,  and define z ~ ~ R+ N 
by  

zj if j e L o r z j ~ <  21/8 
z J~ = 2 lt6 otherwise 
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I f z j  > 21/~ for s o m e j  ~ L, then V(zg) < V(zj) and some terms in the expan- 
sion (1) o f  WN(z ~ are strictly smaller than the corresponding terms for WN(z), 
while all others are equal. This proves WN(Z ~ < Wu(Z) whenever z ~ r z. 
Next, i f z j  ~ > .99 for  a l l j ~ L  define z oo = z~ otherwise define z oo r z ~ as 
follows. First, for  any v E E + N define yj(v) ~ E +, j = 0, 1 , . ,  N, by 

0, j = 0 

YJ = vj + Yj-1, j = 1 , . . . ,N 

Let y~ be the smallest o f  the yj(z ~ for which both  zj ~< .99 a n d j  ~ L, and de- 
fine (Py)~ ~ ~ + by 

~ Yk, k < s 

(PY)~ = ~Y~+I, s ~< k < N 
/ 
[.Yz~ + 2116, k = N 

Repeat  this process if necessary, obtaining (P2y)k, (p3y)~, etc., until after 
K ~< N steps we have (pKy)~ > .99 for all k. Finally, define z oo by z oo = 
(PKY)k -- (P~:Y)k-1, k e L N o w  we prove that  Wu(z ~176 < WN(z 6) whenever 
z oo r z ~ Since at each s t ep '&  the above process the value of  WN is decreased 
by more than 

C O  

AW - V(b) + 2 ~ V(kb) for  some b ~< .99 
/c=2 

we need only show that A W > 0. To this end note that  the smallest a > 0 
satisfying 

V(a)- 2 ~ (ja)-6=O 
J=2  

is 

a = [(27r6),/945 - 1] -1'6 > .99 

Since V(y) ---> ~ as y --> 0, 

Y ( y ) - 2 ~  (jy)-6 > 0 for 0 < y < . 9 9  
J = 2  

Then, since V(y) > y -6 ,  we see that  A W > 0 as desired. N o w  using compact-  
ness and the continuity o f  W~, it follows easily that  there is at least one point  

at which Wz~ attains a global min imum and that  such ~ must  satisfy .99 < 
~j ~< 2116 f o r j  ~L.  Finally, since ~WN/Ozj(z) ~ 0 i fz j  = 21/6, we have in fact 
.99 < ~j < 21/6 f o r j ~ L .  This ends the proof.  

To prove that  the above ~ approximate crystal"  is unique for  finite N, 
and becomes perfectly regular as N---> ~ ,  we use the following properties o f  
the Hessian matrix o f  WN. 
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T h e o r e m  2. Let LeT.  If  z e R +  N satisfies z] > .99 for j e I  and 
zj < 2 ~/6 f o r j e L ,  and A is the matrix Ajk = 02W~r/Oz; Ozk(z), J', k eL ,  then: 

(a) A ] , < 0 f o r j r  
(b) A is positive definite. 
(c) A-  1 is positivity preserving. 

Proof 

] ~- {],Ir 

Since in (2), J ~_ {j, k}, i f j  r k, then IJI >~ 2 and since all zm > .99, we 
have V"(Y.,,~s z,,) < 0, which proves (a). To prove (b) and (c) we will use the 
following lemma. 

Lemma.  ~..J~L Aj, > 0, for all k eL .  

Subproof 

]EL 

= ~.w,,/Oz,~(z) + ~ a~ W,,lezj ~z,(z) 
jEL 

= v"u.) + E E v" z. + v" z. 
n = 2  JeS; J~k ]eL = leS; ] _  {] ,k} \me/ 

] = - L ; l ] l = n  ]-~k ] : - L ; I ] l = n  

42 [ ~ .  n - ' +  2 ~2n~__]n-7 (3) > V"(zk)- (.99)8[f=,=2 = 

where we used Zm > .99, V"(y) strictly increasing and negative for y > 1.9, 
and V"(y) > - 42y -8 for y > 0. Using V"(z~) > V"(21/8) > 14, and integral 
inequalities on the sums, we see that the difference on the RHS of (3) is 
larger than 0, which proves the lemma. 

Now let v], j e L, be real variables. Then 

vsvkAj~ = ]~ vj2A,] + ~ v]vkAj~ 
j , lceL ] ,k~L 

]E n~A,, + E Iv]l iv,,I.a],~ 
j ,k~L 
~:~] 

~> E. ,,,,A]] + ~ ~ [(v,2 + v~)/:]A,~ 
j e L  ]eL /r 

~eL /eeL 

> 0 if some v~ ~ 0, by the lemma 
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This proves (b). Now assume vk > 0, k e L, and assume Au = v. We may 
assume without loss of generality that ]uj] /> ]uk] f o r j  < k since the relevant 
properties of A are preserved under rearrangement of rows and columns. 
Assume ul <~ 0. Then 

] r  Y ~ l  

which contradicts the lemma, proving ul > 0. For  induction assume j e L, 
j r 1, such that uj ~< 0, and u~ > 0 for all 1 ~< k < j. Then 

Y- 1 ILl 

o < v: = Ajjuj + ~, Aj~u~ + ~,  Aj~u~ 
k = l  k = j + l  

< Ayjuj + ~ Aj~u~ 
k = j + l  

( ) < u~ A j s+  ~ Ajk 
k = ] + l  

which contradicts the lemma, proving the induction, and (c). 

The first consequence of Theorem 2 is the following. 

Corollary. The global minimum ~ of WN guaranteed by Theorem 1 is 
unique. 

Proof. Theorem 2(b) shows that W~ is convex in the z~, k e L, if .99 < 
ze < 21/6 �9 QED. 

Next we must establish control over the dependence on N of the inter- 
particle spacings. Let L = {1, 2 ..... N - 1}. For  each zN > .99, the Corollary 
to Theorem 2 shows there is a well-defined function ~(zu) satisfying .99 < 
ffj < 21/6 and 0 WN/OZj(~) = 0 fo r j  e L. Since the determinant ]O2WN/OZk OZj(Z) I, 
L k e L, is not zero, from Theorem 2(b), the implicit function theorem shows 
that ~.(zN) is differentiable with respect to zu, and by differentiating the 
equations O WN/gzj(~) = 0 we see that the d'2j/dzn satisfy 

j~ [O2 WN/Ozk ez~(Z)] ds + ~2 WN/Ozu Ozk(i) = 0 

for k eL .  But using Theorem 2(a) and (c), we see that dij/dzu > 0 f o r j  eL .  
As zN -+ 0% the is(zN) approach the values that minimize Wu_ 1. As zN comes 
in from 0% the ij(zN) decrease monotonically. Somewhere in (.99, 2~I6), zN 
reaches a value ~u such that WN(i~(YN),..., ZN- l(~w), "~N) is the global minimum. 
Thus, introducing a particle at either end of  a finite chain " in  the ground 
state" leads to a new ground-state configuration with all previous spacings 
decreased. Since each of these spacings are bounded below by .99, if particles 
are added one by one to both sides, in any order b u t  such that an infinite 
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number are added to each side, then each :~k (k fixed, and now positive or 
negative to allow adding particles at either end) has a limit c independent of 
the sequence used and thus independent of k. To compute this limiting, equal 
spacing we note that for finite N the #i are the unique solutions in (.99, 21/6) of 
~]~S; S~] V ' ( ~ ]  Z~) = 0l Letting N - +  0% and noting that the corresponding 
infinite series is uniformly convergent in the zj, we can let zj ~ e and find 
that c satisfies 

~ nV'(ne) = 0 (4) 
n = l  

which can be interpreted as the minimization, with respect to variable c, of 
2 ~ =  ~ V(nc), the energy per particle of  infinitely many equally spaced 
particles. The solution of (4) is easily seen to be [2~(12)/~(6)] 1/6= 
7r(3,714,816/1,816,214,400) x/6, where ~ is Riemann's zeta function. 

We summarize our results as follows. 

T h e o r e m  3. For fixed N, EN(x) attains a unique global minimum, at 
x = ~.. As infinitely many particles are added one by one to both sides of the 
chain, in any order, then for fixed j ~ Y ,  2 j -+jc  as N-+oo ,  where c = 
,~(3,714,816/1,816,214,400) 1/6. (We note without proof  that for finite N, the 
unique ground state is actually the unique state of static equilibrium.) 
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